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SUMMARY

Logit models may be used to express the incideate of diseases when the impact
depends on two, or more, additive factors. A doufil@mization algorithm is presented
for the adjustment of such models for the casevofdadditive factors. An application to
the incidences of Tuberculosis and AIDS is presknte

Key words: Logit models, double minimization algorithm

1. Introduction

Nunes et al (2004ysed a Zigzag algorithm to adjust logit models with
anadditive two factors structure, but they did establish the convergence of
the algorithm to the absolute minimum of the ohjectunction.

In this paper we develop an alternative to the &galgorithm which does
not present convergence problems. We will makectimeparison between both
algoritms. The paper is organized as follows. Inti®a 2 we describe the logit
model. In Section 3 we briefly outline the Zigzdgaithm. The new algorithm
and the key ideas of this paper are reported itidded. Lastly, we present an
application to the incidence of Tuberculosis (TB)aof acquired immune
deficiency syndrome (AIDS) in European Union coigstrand compare the
results obtained with the Zigzag algorithm.
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As we shall see both algorithms display a significagreement. This is
important since only for the new algorithm we hav@roof of convergence.
Actually the classical Zigzag algorithm is easapply but the new algorithm
works well with, for instancdyht henmat i ca software.

2. Logit Model

Logit models are a good choice to express the emud rate of diseases
when the impact depends on two (or more) additizetois. We take as
dependent variable a binary variable,

Y =1 if theindividualisinfectedwith somedisease
Y =0 if not '

In our application the binary logistic regressisnmore adequate than the
linear regression. Let us assume the logit model

Y. =logit(p,) =l =a+ L,
1-p
where
p,,; represents the probability of an evefibccurring. In this case it
represents the probability of an individual beimdected with some
disease in country (i=1...,m) duringyeaj (j=1...,n),
= X ; represents the exposure,

» g and [ are parametersf representing the rate of variation §f
with X.

Since the available information is the incidencéesafor the pairs of
countries and years we need to formulate our miodglich a way that we may
estimate both the regression coefficiemtsand S and the exposures; ;,
i=1...,m, j=1...,n. Todo this we assume thag ; = f; + g, this is we
assume for the exposures a two factor additivensodel.
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The two factors will be,
= alocation factor whose Ievelfs_,..., fm correspond to countries,

= atime factor whose levelg,, ..., g, correspond to years.
We now have the model

y,, =logit(p, ) =a+A(f, +g,)

and the goal function

m n
s=x 3 a il -a-alfi+g;)P.
i=1j=1
where the weightsj; ; are the inverses of the variancesyof :

1

Var(y, )= ———,
TN x

i=1...,m, j=1...,n, where Ni’j represents the population in countryand
in year j . Thus we must estimate, 3, f,,...,f,andg,,...,0,-

3. Zigzag Algorithm

The Zigzag algorithm is an iterative algorithm. ihdialize this algorithm
we assume as initial values far ; the following ones

Xi,j(0)=yi,. Yo i =Yoo i=1...,m, j=1...,n,

where
1 n 1 m 1 m n
Yie == 2 Vijr Yo i == 2Vijo Yoo = 22 V-
nj=1 Mi=1 mxNj=1j=1

So we may write
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s(0)= anl Enl qi,j(Yi,j —a—,Bxi,j(O))z =

i=1j=1

=§ > Qi,j(Yi,j _a_lg(fi(o)"'gj(o)))z-

To lighten the notation let us pug; (0)=x; ;.

Then we are in conditions to describe the seveéegksof each iteration:
Step 1.In the first step we minimiz& in order to the paramete(ta,[?), using
the initials values ofx ;. From this minimization we obtained the following
estimates:

G =d=y,-fx and f)= =22,
S, x
m n m n
222G %, 2 2.6, -
wherey, = '_11:1+ X = ':“:1+ with g* =3 Y q |
q q i=1j=1

m n o m n

and s, :lelqi,j(xi,j %P sy =_21_Zlqi,,-(xi,,- -x i -y )-
1=1]= 1=1j=

Step 2.In this step we minimize

S:Eiqi,j(yi,j _a_lé(fi +gj))2

i=1j=1

in order to the vectorim and g”. We then solve the system:

|:D-|:E Q}in =\lm+n’
Q D;jg

where Q:[Qi,jJ’ Dl:D(iloﬂ'j"”'ilqm’jJ and DzzD{glqil,...,glqi’nj
i= i= i= i=
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and the components of ™" are:

Vi:

(L v s
- i i (Yii— ,1=1...,m,
ﬂjaq,J(y,, a)

1m o
Vins :_"Zqi,j(yi,j -a). j=1...,n.
,Blzl

The solutions of the previous system will tfe(l), i=1...,m and g; ()
j=1...,n and, consequentlyx, ; (1) = f}(1)+g,- ®
Step 3.In the third step we calculate the sum of squaresitiues
~ ~ mn R ~ ~ R 2
S0=5=53a,(v; -a0-4oli0+e,0)
i=1]=!
where @ (1), /@), ﬂ(l), i=1..,mand §; @, j=1...,n are the adjusted

values obtained in iteratich
Step 4.In this last step we carry out the standardizatifrihe X j in order to

keep unchanged the minimum and the maximumxof. We compute

b-a

mx(ﬁj (1)—a(1))+a,

W)=

where
a=min{x_;(0)}, b=max{x ;(0)},
a(®) =min{x ;@)}, b@ =max{x ; (1)}

withi=1...,mandj=1...,n.

The values obtained from this standardization Ww# used in the next
iteration. This procedure is repeated till the sofm squares of residues
stabilizes, see for instance, Mexibal. (1999).
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4. Double Minimization Algorithm

To apply this algorithm we reparametrize the gaattion taking

a,=a+p9;, j=1...,n
x=f ,i=1...,m

m n
thus gettingS= 3 > q ; (yi,j —aj - B )2 .
i=1j=1
Nextly we obtain the minimurs(x) of S for X known. This minimum
will itself be minimized so that, as mentioned he algorithm’s name, we have
a double minimization.
Step 1.As stated we now obtas{x) . Since

s=3 30+ 3 a Jot+ £ 0] -28  Bam o
J=1\i=

i=1j=1 j=1\i=1 i=1j=1

—2{§ > Ci,jxiM,jJIBJfZanl(gquxijaiﬂ'
j=1\i=

i=1j=1
we get
3S m m m ]
6_-:2 20, |5 226G, Yi,jt2 X0,i% |8, | =1...,n.
aj i=1 i=1 i=1

Solving the equatio%ai =0, j=1...,n we obtain

aj
aj.=y.j—,8x.j,j:l...,n (1)
m m
20 Vi 2.0 %
with y,; == andx,; == ,i=1...n.Takinga, =a, we get
m m ] ]
2. G j > Gij
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Ezzﬁigqi,i(xi -x;f ‘ziﬂglqi'i(xi =% i = v-)
e

op EE

Solving the equatiOHg% =0 we obtain

iﬁqi,j(xi ‘X-j)(yi,j —y.,-)
g =25 (2)
>3, %)
i=1i=
Thus according to (1) and (2),
m 2
- (;aixij
S(X)ZZZQi,j(Yi,j ‘Y-j)z‘ p =
=1)=t Zl_lei,j(Xi —X.j)z
i=lj=

n
with g = Zlqi,,-(yi,,- —y.,-), i=1,...,m.
J:
Step 2.In this step we minimizes( x)as a function ofx™. Let us observe that

minimizing s(x) is equivalent to maximizing

m 2

(Z&Nj

i=1
m n !
> 20,0 -x, f
i=1j=1

which is equivalent to minimizing it's inverse.

If we multiply eachx, i =1,...,m by a non null constant both the

numerator, that we will represent ng(), and the denominator appear

multiplied by ¢®. This allows us to introduce the restriction
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m 2 m m
(ZaixiJ =1 which is equivalent to having_ajx = dr Y ax =-1.
i=1 i=1 i=1

As g(x) is an even functiong(x)=g(- x), we can assume either one of the
conditions, so let us chooge™, & x =1 and minimize the functiom(x) under

this restriction.

In order to solve this problem of minimization itas necessary first to
rewrite the functiong(g() in a quadratic form and nextly to incorporate the
restriction.

Now taking p; =¥ %1q j, j =1...,n we get
CI Giid
90=Y| 3| g, ——t | |52 zzz""tm
i=1 j= p —1| j=1 p]
. L _DGa .,
and puttingl; = Z 0] andc” => ——=i,l=1...,m we have

j=1 =1 Pj

g(x)= Zlm ZZ%&

i=11=1

m-1
Nextly we incorporate the restriction, taking, :i(l— Zaqu so the new
1=1

function to be minimized will be

m—l |...—C . m-1m-1
g (x)= LI Gt meaiz"' lu ]><.+Z Z( a +
=1 am am =1 1=1 '¢|am
|
TP q|}qx| > [ZCim"'Zlm_gmmaiJXi Im”Fmm
a2 =1\ @m am am

Lastly we may use Mathematica software to carrytioigtlast minimization.
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5. Application to the incidence of some diseases in Expean
Countries

We applied both algorithms to data on the incidenic&uberculosis (TB)
and of AIDS in thirteen European countries (m=13)ering seven years (n=7),
from 1997 to 2003. We used the data available inQAEdirope’s statistical
databases.

We start with TB. To compare both algorithms wespré in Table 1 the
estimated values of;, yf,j obtained through Zigzag and Double Minimization.
To lighten the presentation we only present thet &ind last year studied.

Table 1. TB: Comparison between the two algorithms

1997 2003
ZigZag Double Minimization ZigZag Double Minimization

Country a+p(x) a;+pB(x) a+B(%) a;+pB(%)

Austria -8.74355 -8.74355 -9.02797 -9.02797
Belgium -8.89010 -8.89010 -9.17453 -9.17453
Denmark -9.11910 -9.11910 -9.40352 -9.40352
Finland -9.08677 -9.08677 -9.37119 -9.37119
Germany -8.99053 -8.99053 -9.27495 -9.27495
Greece -9.43489 -9.43489 -9.71932 -9.71932
Ireland -9.00980 -9.00980 -9.29423 -9.29423
Italy -9.33389 -9.33389 -9.61831 -9.61831

Luxembourg -9.15778 -9.15778 -9.44220 -9.44220
Portugal -7.55597 -7.55597 -7.84039 -7.84039
Spain -8.36333 -8.36333 -8.64775 -8.64775
Sweden -9.78557 -9.78557 -10.07000 -10.07000
UK -9.02907 -9.02907 -9.31350 -9.31350

As we can see the values are the same and thieimappr all the seven
years.

In Figure 1 we present the adjusted coefficientddoal factorsf; adjusted
through both algorithms.
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Figure 1. TB: adjusted coefficients for local factdts

This Figure clearly suggests a linear relation leetw the location effects
adjusted by the two algorithms. Representingfbyand f' those effects for the
Zigzag and Double Minimization algorithms we adgasthe linear regression

f'=0128+0,00001F with R®> =0998

which strongly validates the existence of the agguifimear relation. This is an
additional reason to accept that, for this casé&) bigorithms led to equivalent
results.

The estimated value db and of the determination coefficient, for the togi
model, are the same for both algorithms

S=344038
R? =0944

and, as we can see, show a quite good adjustments.

In the case of the incidence of AIDS we made timesaomparisons and the
conclusions are the same.

The estimated values gfj, yi*yj , are presented in Table 2. Once again the
results are equal for both algorithms.
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Table 2. AIDS: Comparison between the two algorithms

1997 2003
ZigZag Double Minimization ZigZag Double Minimization

Country a+p(x) a;+pB(x) a+B(%) a;+pB(%)

Austria -11.1303 -11.1303 -11.9147 -11.9147
Belgium -10.9573 -10.9573 -11.7417 -11.7417
Denmark -10.8563 -10.8563 -11.6407 -11.6407
Finland -12.0946 -12.0946 -12.8790 -12.8790
Germany -11.1801 -11.1801 -11.9645 -11.9645
Greece -11.0507 -11.0507 -11.8351 -11.8351
Ireland -11.5759 -11.5759 -12.3603 -12.3603
Italy -9.7702 -9.7702 -10.5546 -10.5546
Luxembourg -10.5483 -10.5483 -11.3327 -11.3327
Portugal -8.8577 -8.8577 -9.6421 -9.6421
Spain -9.1269 -9.1269 -9.9113 -9.9113
Sweden -11.4857 -11.4857 -12.2701 -12.2701
UK -10.7320 -10.7320 -11.5164 -11.5164

As for TB we have a well defined linear relationtoeen the adjusted

coefficients, obtained through both algorithms, flee location effects, as we
can see in Figure 2.

Droublelvlimimization
015844 .
L
015842
L
7i

45 -4 e-35 -3 -25 -2 Beag
0158383 -

.-
0.15836

Figure 2. AIDS: adjusted coefficients for local factorﬁ
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We now got, f' =0158+0,000027% with R? =0999854, thus also for AIDS
the existence of the linear relation betweknand f' is strongly validate. The
adjustments of the logit model through both aldumis are very good

S=117245
R% =0904

Thus both algorithms display a remarkable agreemdoteover the Zigzag
algorithm only required two iterations in eithepépation. So, once again, this
algorithm performed very well.
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