
 
 
 
 

Biometrical Letters 
Vol. 45 (2008), No. 1, 69-80 

Double minimization for logit models with an additive 
two factors structure   

Inês Jorge Sequeira1, João Tiago Mexia1, Sandra Nunes2 

1Department of Mathematics, Faculty of Science and Technology, New University of Lisbon, 
Quinta da Torre 2829-516 Caparica, Portugal, e-mail: ijs@fct.unl.pt  

2Department of Mathematics, EST/IPS, Campus do IPS, Estefanilha, 2910-761 Setúbal, Portugal, 
e-mail: snunes@est.ips.pt  

SUMMARY  

Logit models may be used to express the incidence rate of diseases when the impact 
depends on two, or more, additive factors. A double minimization algorithm is presented 
for the adjustment of such models for the case of two additive factors. An application to 
the incidences of Tuberculosis and AIDS is presented.  
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1. Introduction 

Nunes et al (2004) used a Zigzag algorithm to adjust logit models with 
anadditive two factors structure, but they did not establish the convergence of 
the algorithm to the absolute minimum of the objective function.  

In this paper we develop an alternative to the Zigzag algorithm which does 
not present convergence problems. We will make the comparison between both 
algoritms. The paper is organized as follows. In Section 2 we describe the logit 
model. In Section 3 we briefly outline the Zigzag algorithm. The new algorithm 
and the key ideas of this paper are reported in Section 4. Lastly, we present an 
application to the incidence of Tuberculosis (TB) and of acquired immune 
deficiency syndrome (AIDS) in European Union countries and compare the 
results obtained with the Zigzag algorithm.  
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As we shall see both algorithms display a significant agreement. This is 
important since only for the new algorithm we have a proof of convergence. 
Actually the classical Zigzag algorithm is easier to apply but the new algorithm 
works well with, for instance, Mathematica software.   

2. Logit Model 

Logit models are a good choice to express the incidence rate of diseases 
when the impact depends on two (or more) additive factors. We take as 
dependent variable a binary variable, 
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In our application the binary logistic regression is more adequate than the 
linear regression. Let us assume the logit model 
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where 
� jip ,  represents the probability of an event Y occurring. In this case it 

represents the probability of an individual being infected with some 
disease in country i  ( )mi ,,1K=   during yearj  ( )nj ,,1K= , 

� jix ,  represents the exposure, 

� α  and β  are parameters, β  representing the rate of variation of y  
with x . 

Since the available information is the incidence rates for the pairs of 
countries and years we need to formulate our model in such a way that we may 
estimate both the regression coefficients α  and β  and the exposures jix , , 

mi ,,1K= , nj ,,1K= . To do  this  we assume that                      , this is we 
assume for the exposures a two factor additive sub-model.  

jij,i gfx +=
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The two factors will be, 
� a location factor whose levels mff ,,1 K  correspond to countries, 

� a time factor whose levels ngg ,,1 K  correspond to years. 

We now have the model 

( )jijiji gfpity ++== βα)(log ,,  

and the goal function 
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where the weights jiq ,  are the inverses of the variances of jiy , :  
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mi ,,1K= , nj ,,1K= , where jiN ,  represents the population in country i  and 

in year j . Thus we must estimate α , β , mff ,,1 K  and ngg ,,1 K . 

3. Zigzag Algorithm 

The Zigzag algorithm is an iterative algorithm. To initialize this algorithm 
we assume as initial values for jix ,  the following ones 
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So we may write 
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To lighten the notation let us put ( ) jiji xx ,, 0 = .  

Then we are in conditions to describe the several steps of each iteration: 
Step 1. In the first step we minimize S in order to the parameters( )βα , , using 

the initials values of j,ix . From this minimization we obtained the following 

estimates: 
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Step 2. In this step we minimize 
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in order to the vectors mf  and 
ng . We then solve the system: 
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and the components of  nmV +  are: 
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The solutions of the previous system will be )1(îf , mi ,,1K=  and )1(ˆ jg , 

nj ,,1K=  and, consequently, )1(ˆ)1(ˆ)1(ˆ , jiji gfx += . 

Step 3. In the third step we calculate the sum of square of residues  
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where )1(α̂ , )1(β̂ , )1(îf , m,,i K1=  and )1(ˆ jg , n,,j K1=  are the adjusted 

values obtained in iteration 1. 
Step 4. In this last step we carry out the standardization, of the j,ix , in order to 

keep unchanged the minimum and the maximum of  j,ix . We compute  

( ) aax
ab

ab
w jiji +−×

−
−= )1()1(ˆ

)1()1(
)1(ˆ ,, , 

where  
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with mi ,,1K=  and nj ,,1K= . 

The values obtained from this standardization will be used in the next 
iteration. This procedure is repeated till the sum of squares of residues 
stabilizes, see for instance, Mexia et al. (1999). 



 
 
 
 

I. J. Sequeira, J. T. Mexia, S. Nunes 

 
 
 
 
74 

4. Double Minimization Algorithm 

To apply this algorithm we reparametrize the goal function taking  
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Nextly we obtain the minimum )(xs  of S  for x  known. This minimum 
will itself be minimized so that, as mentioned in the algorithm’s name, we have 
a double minimization. 
Step 1. As stated we now obtain )(xs . Since  
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Step 2. In this step we minimize )x(s as a function of mx . Let us observe that 

minimizing )(xs  is equivalent to maximizing  

( )∑ ∑

∑

= =
•

=

−










m

i

n

j
jij,i

m

i
ii

xxq

xa

1 1

2

2

1 ,  

which is equivalent to minimizing it’s inverse.  
If we multiply each ix , mi ,,1K=  by a non null constant c  both the 

numerator, that we will represent by ( )xg , and the denominator appear 
multiplied by 2c . This allows us to introduce the restriction  
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In order to solve this problem of minimization it was necessary first to 
rewrite the function ( )xg  in a quadratic form and nextly to incorporate the 
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Lastly we may use Mathematica software to carry out this last minimization. 
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5. Application to the incidence of some diseases in European 
Countries 

We applied both algorithms to data on the incidence of Tuberculosis (TB) 
and of AIDS in thirteen European countries (m=13) covering seven years (n=7), 
from 1997 to 2003. We used the data available in WHO/Europe’s statistical 
databases.  

We start with TB. To compare both algorithms we present in Table 1 the 
estimated values of yi,j, 

*
j,iy  obtained through Zigzag and Double Minimization. 

To lighten the presentation we only present the first and last year studied.  
 

Table 1. TB: Comparison between the two algorithms 

 1997 2003 

Country 
ZigZag 

)( ijxβα +  

Double Minimization 

)( ij xβα +  

ZigZag 

)( ijxβα +  

Double Minimization 

)( ij xβα +  

Austria -8.74355 -8.74355 -9.02797 -9.02797 
Belgium -8.89010 -8.89010 -9.17453 -9.17453 
Denmark -9.11910 -9.11910 -9.40352 -9.40352 
Finland -9.08677 -9.08677 -9.37119 -9.37119 
Germany -8.99053 -8.99053 -9.27495 -9.27495 
Greece -9.43489 -9.43489 -9.71932 -9.71932 
Ireland -9.00980 -9.00980 -9.29423 -9.29423 
Italy -9.33389 -9.33389 -9.61831 -9.61831 
Luxembourg -9.15778 -9.15778 -9.44220 -9.44220 
Portugal -7.55597 -7.55597 -7.84039 -7.84039 
Spain -8.36333 -8.36333 -8.64775 -8.64775 
Sweden -9.78557 -9.78557 -10.07000 -10.07000 
UK -9.02907 -9.02907 -9.31350 -9.31350 

 

As we can see the values are the same and this happens for all the seven 
years.  

In Figure 1 we present the adjusted coefficients for local factors fi adjusted 
through both algorithms.  
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Figure 1. TB: adjusted coefficients for local factors fi  

This Figure clearly suggests a linear relation between the location effects 
adjusted by the two algorithms. Representing by f  and f ′  those effects for the 
Zigzag and Double Minimization algorithms we adjusted the linear regression  

f,,f 00001301280 +=′  with 99802 ,R =   

which strongly validates the existence of the assumed linear relation. This is an 
additional reason to accept that, for this case, both algorithms led to equivalent 
results. 

The estimated value of S  and of the determination coefficient, for the logit 
model, are the same for both algorithms 
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and, as we can see, show a quite good adjustments. 

In the case of the incidence of AIDS we made the same comparisons and the 
conclusions are the same. 

The estimated values of yi,j, 
*
, jiy ,  are presented in Table 2. Once again the 

results are equal for both algorithms. 
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Table 2. AIDS: Comparison between the two algorithms 

 1997 2003 

Country 
ZigZag 

)( ijxβα +  

Double Minimization 

)( ij xβα +  

ZigZag 

)( ijxβα +  

Double Minimization 

)( ij xβα +  

Austria -11.1303 -11.1303 -11.9147 -11.9147 
Belgium -10.9573 -10.9573 -11.7417 -11.7417 
Denmark -10.8563 -10.8563 -11.6407 -11.6407 
Finland -12.0946 -12.0946 -12.8790 -12.8790 
Germany -11.1801 -11.1801 -11.9645 -11.9645 
Greece -11.0507 -11.0507 -11.8351 -11.8351 
Ireland -11.5759 -11.5759 -12.3603 -12.3603 
Italy -9.7702 -9.7702 -10.5546 -10.5546 
Luxembourg -10.5483 -10.5483 -11.3327 -11.3327 
Portugal -8.8577 -8.8577 -9.6421 -9.6421 
Spain -9.1269 -9.1269 -9.9113 -9.9113 
Sweden -11.4857 -11.4857 -12.2701 -12.2701 
UK -10.7320 -10.7320 -11.5164 -11.5164 

 

As for TB we have a well defined linear relation between the adjusted 
coefficients, obtained through both algorithms, for the location effects, as we 
can see in Figure 2. 

 
Figure 2. AIDS: adjusted coefficients for local factors if  
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We now got, f,,f 000027901580 +=′  with 99985402 ,R = , thus also for AIDS 

the existence of the linear relation between f  and f ′  is strongly validate. The 
adjustments of the logit model through both algorithms are very good  





=
=

9040

451172
2 ,R

,Ŝ
 

Thus both algorithms display a remarkable agreement. Moreover the Zigzag 
algorithm only required two iterations in either application. So, once again, this 
algorithm performed very well.  
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